Contribution from the Department of Chemistry, Polytechnic Institute of New York, Brooklyn, New York 11201

Scheelite-Type Rare Earth Molybdates(V) and -(VI). $Eu_{x}MoO_{4}$ and $LnMoO_{4}$

E. BANKS* and M. NEMIROFF

Received April 2, 1974

New tetragonal scheelite-type compounds of stoichiometry $Eu^{II}_xMoO_4$ (0.67 $\leq x \leq 1.00$) and $Ln^{III}MoO_4$ (Ln = Y, Gd-Lu) have been prepared by heating reaction mixtures in sealed tubes. The series Eu_xMoO_4 changes from $Eu^{II}MoVIO_4$ to $Eu^{III}_{0,6}MoVIO_4$ with evidence from ir spectra and lattice parameter shifts of distortion and multiple site symmetry of the MoO₄² tetrahedra. Density measurements indicate that the solid solutions are characterized by Eu lattice vacancies. The $Eu_{0,67}MoO_4$ is readily converted to the monoclinic $Eu_2(MoO_4)_3$ structure, an ordered vacancy modification of the scheelite structure. Infrared spectra and lattice parameter shifts of the LnMoO₄ phases are compatible with the distribution Ln^{III}-MoVO₄. Magnetic susceptibility measurements on YMoO₄ and GdMoO₄ show an effective moment of 1.31 μ_B for MoV. This is reduced from the spin-only value of 1.73 μ_B for d' by spin-orbit coupling. These are the first compounds reported in which all the Mo is present as Mo^VO₄ tetrahedra.

Introduction

Preparations of mixed oxides of the rare earths and group VI transition elements nominally in the 5+ oxidation state have led to strikingly different results in the cases of chromium and tungsten. In the latter case, the products are tungsten bronzes Ln_xWO_3 (0 < x < 0.33)¹ while chromium forms compounds of huttonite or zircon structures,² with composition LnCrO₄, where the chromium is present in the form of distorted CrO_4^{3-} tetrahedra with a chromium valence of 5+. These compounds are isostructural with the corresponding phosphates, arsenates, and vanadates.³ The arsenates and vanadates are reported to transform at high pressure to a scheelite-type phase which can be quenched and retained metastably at 1 atm.⁴ Stubican has found that rare earth niobates, $LnNbO_4$, and tantalates, $LnTaO_4$, transform to a high-temperature nonquenchable scheelite-type phase.⁵ At the time this research was undertaken, there were no reports of reduced molybdenum rare earth oxides, nor was there any report of compounds containing pentavalent molybdenum in MoO_4^{3-} anions. Recently a report of Na_3MoO_4 has appeared,⁶ but its structure is not yet known, although the authors suggest a structure derived from the rock salt structure. In a dissertation by Hubert,⁷ structures of the type $Ln_5Mo_3O_{16}$ were reported. The susceptibility measurements were compatible with $Ln_5Mo^{VI}_2Mo^{VO}_{16}$. In the present work, we offer evidence that all the molybdenum in the LnMoO₄ compounds is in the 5 + oxidation state and that, in the defect solid solutions involving europium, it remains in the form of molybdate(VI) anions.

Experimental Section

The Eu_xMoO₄ compounds were prepared by heating a mixture of the appropriate molar ratios of MoO₂, MoO₃, and Eu₂O₃ in evacuated and sealed silica tubes for 1-2 hr at 1200° except for $Eu_{0.80}$ MoO₄ which was heated for 2 hr at 1050°. The compounds were deep brown-black except for $Eu_{0.70}MoO_4$ and $Eu_{0.67}MoO_4$ which were gray. McCarthy has reported the preparation of EuMoO₄.⁸ The LnMoO₄ compounds were prepared by heating thoroughly mixed equimolar ratios of MoO_2 , MoO_3 , and Ln_2O_3 at 1200° for 1 hr in evacuated and sealed silica tubes. The compounds are all black. Attempts at preparing LaMoO₄-SmMoO₄ were unsuccessful. The prep-

- (7) P.-H. Hubert, Thesis, l'Universite Claude Bernard, Lyon I. France, 1973.
 - (8) G. J. McCarthy, Mater. Res. Bull., 6, 31 (1971).

arations were black. However, the powder patterns were quite similar to those of the starting rare earth oxides Ln_2O_3 . The oxides used were Baker and Adamson MoO₃ (99.5% minimum), Alfa Inorganics MoO₂ (99% minimum), and ROC/RIC rare oxides (99.9% minimum).

Lattice parameter measurements for all powders were calculated by a least-squares program from data taken with graphite-monochromated Cu Ka radiation using W or Si as internal standards. The infrared measurements were taken on a Perkin-Elmer Model 521 spectrophotometer. Samples were pressed in KBr pellets with the exception of $Eu_{0.67}MoO_4$ which was ground in Nujol and placed between KBr disks. $Eu_{0.67}MoO_4$ would convert to the stable monoclinic Eu_2 - $(MoO_4)_3$ phase when pressed in KBr pellets. Density measurements of $Eu_{0.90}MoO_4$, $Eu_{0.80}MoO_4$, and $GdMoO_4$ were measured by displacement of water. The magnetic susceptibility measurements of YMoO₄ and GdMoO₄ were obtained on a vibrating-sample magnetometer from room temperature to liquid nitrogen temperature.

Lattice Parameter Measurements

Lattice parameters for the $LnMoO_4$ and Eu_xMoO_4 compounds are shown in Tables I and II, respectively. A plot of $V^{1/3}$ vs. r for Ln³⁺ eight-coordinate rare earth radii⁹ is linear within experimental error except for Ho³⁺ and Y³⁺ (Figure 1). The poor fit at Ho^{3+} and Y^{3+} is most likely due to uncertainties in the reported ionic radii. Greis and Petzel⁹ calculated ionic radii for $VIIIY^{3+}$ and $VIIIHO^{3+}$ as 1.004 and 1.000 Å, respectively. However, extensive data on rare earth Al, Ga, and Fe garnets¹⁰ show differences in lattice parameters of no more than one part per thousand for Y³⁺ and Ho³⁺ garnets, indicating that the ionic radii of VIIIY³⁺ and $VIIIHo^{3+}$ are closer than the difference indicated by Greis and Petzel for the trifluorides. A plot of V vs. x for Eu_xMoO_4 drawn in Figure 2 shows more deviation from a straight line than the plot of Figure 1. This is probably due to the uncertainty in the stoichiometry of europium. The rare earth molybdates (Y, Gd-Lu) do not exhibit this nonstoichiometry. Attempts to synthesize Y_xMoO_4 and Gd_x - MoO_4 where x < 1.00 resulted in the stoichiometric phase plus the expected impurities. Density measurements on Eu_{0.80}MoO₄ and GdMoO₄, shown in Table III, agree within experimental error with the X-ray density. The low densities of $Eu_{0.90}MoO_4$ and $YMoO_4$ are most likely due to voids between crystallites. Both compounds are soft sinters at the temperature of preparation. This indicates that the assumed stoichiometry of the Eu_xMoO_4 compounds is correct and can be formulated as $Eu_x \square_{1-x} MoO_4$.

Infrared Measurements

Infrared spectra of EuMoO₄ and SrMoO₄ shown in

(9) O. Greis and T. Petzel, Z. Anorg. Allg. Chem., 403, 1 (1974). (10) M. Kokta, Thesis, Department of Chemical Engineering, Newark College of Engineering, Newark, N. J., 1972.

AIC402191

⁽¹⁾ W. Ostertag, Inorg. Chem., 5, 758 (1966).

H. Schwarz, Z. Anorg. Allg. Chem., 323, 275 (1963).
H. Schwarz, Z. Anorg. Allg. Chem., 323, 33 (1963).
V. S. Stubican and R. Roy, Z. Kristallogr., Kristallgeometrie, Kristallphys., Kristallchem., 119, 90 (1963). (5) V. S. Stubican, J. Amer. Ceram. Soc., 47, 55 (1964).

⁽⁶⁾ H. Kessler, C. Ringenbach, L. Lavielle, and A. Hatterer, C. R. Acad. Sci., Ser. C., 277, 763 (1973).

Table I. Lattice Parameters for Tetragonal LnMoO₄^a

	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
YMoO ₄	5.170(1)	11.000 (4)	294.1 (2)
EuMoO	5.392 (2)	11.992 (5)	348.7 (3)
Eu sGd MoO4	5.374 (2)	11.942 (6)	344.9 (2)
Eu _{0.85} Gd _{0.15} MoO ₄	5.351 (2)	11.850 (6)	339.4 (2)
Gd _{0.85} Eu _{0.15} MoO ₄	5.220(1)	11.170 (2)	304.4 (1)
GdMoO ₄	5.214 (2)	11.180 (6)	304.0 (3)
TbMoO ₄	5.202(1)	11.110 (2)	300.7 (1)
DyMoO ₄	5.187(1)	11.064 (4)	297.7 (1)
HoMoO	5.175(1)	11.008 (4)	294.9 (1)
ErMoO	5.156 (1)	10.966 (4)	291.5 (2)
TmMoO ₄	5.141 (1)	10.962 (3)	288.6 (1)
YbMoO₄	5.127(1)	10.880 (2)	286.0 (1)
LuMoO ₄	5.117 (1)	10.857 (3)	284.3 (1)

^a Least-squares deviations in parentheses.

Table II. Lattice Parameters for Tetragonal $Eu_x MoO_4^{a}$

/	<i>a</i> , Å	<i>c,</i> Å	V, Å ³
EuMoO₄	5.392 (2)	11.992 (5)	348.7 (3)
Eu MoO4	5.343 (3)	11.821 (5)	337.5 (3)
Eu 80 MoO	5.299 (2)	11.769 (4)	330.6 (2)
Eu 70 MoO	5.255 (4)	11.608 (9)	320.5 (5)
Eu _{0.67} MoO ₄	5.232 (2)	11.528 (6)	315.6 (3)

^a Least-squares deviations in parentheses.

Table III. Densities of Eu_xMoO_4 , $YMoO_4$, and $GdMoO_4$

Figure 1. $V^{1/3}$ vs. eight-coordinate radii of Ln³⁺ ions⁹ for LnMoO₄ compounds.

Figure 3 are very similar, as would be expected for MOQ_4^{2-} tetrahedra. The spectra of the europium-deficient Eu_xMOQ_4 compounds show a distortion of the MOQ_4^{2-} tetrahedra. The band at 705 cm⁻¹ increases in relative intensity with decreasing europium content. This is compatible with multiple-site symmetry for the MOQ_4^{2-} tetrahedra. The spectrum of GdMoQ₄ in Figure 4 is characteristic of

The spectrum of GdMoO₄ in Figure 4 is characteristic of all the LnMoO₄ compounds and is also similar to that of Gd-NbO₄, reported by Komkov¹¹ to contain tetrahedral NbO₄³⁻ groups, which is also shown in Figure 4. This indicates that $Mo^{VO_4}^{3-}$ tetrahedra are present. Solid solutions of Gd_{1-x}-Eu_xMoO₄ and Eu_{1-x}Gd_xMoO₄ were prepared where the solid solubility limits of x were both ~0.15. The infrared spectra of some of these solid solutions are shown in Figure 4. The

Figure 2. Volume vs. x in Eu_xMoO_4 compounds.

spectrum of Gd_{0.85}Eu_{0.15}MoO₄ remains unchanged from that of GdMoO₄. This is a clear indication that Eu^{3+} enters the Gd^{3+} sites. If Eu^{2+} were to enter the sites, the presence of $Mo^{VI}O_4^{2-}$ would be necessary for charge compensation. No MoO_4^{2-} vibrational modes are present in the spectrum. In addition, the cell volume is only slightly increased above that of GdMoO₄: $304.4 \text{ Å}^3 vs. 304.0 \text{ Å}^3$, indicating substitution by Eu³⁺, not Eu²⁺. The case with Eu_{0.85}Gd_{0.15}MoO₄ is more confusing. Gd³⁺ must enter Eu²⁺ sites. This is confirmed by the substantial decrease in the cell volume compared with EuMoO₄: 339.4 Å³ vs. 348.7 Å³. The change in the infrared spectrum is most likely due to the presence of distorted $Mo^{VI}O_4^{2^-}$ and $Mo^{V}O_4^{3^-}$ tetrahedra. The strongest broad band of $Mo^{V}O_4^{3^-}$ which would be expected at 650 cm^{-1} may be hidden under the broad band of a distorted $Mo^{VI}O_4^{2-}$ tetrahedron. The similarity between the spectra of Eu_{0.85}Gd_{0.15}MoO₄ and Eu_{0.90}MoO₄ suggests that there may be some $Mo^{V}O_{4}^{3-}$ present in the latter. However, the infrared measurements cannot resolve this uncertainty.

Magnetic Measurements

Magnetic susceptibility measurements have been made on YMoO₄ and GdMoO₄ in the temperature range 77-300°K. The plots of $1/\chi \times 10^{-2}$ ((emu)⁻¹) vs. T for YMoO₄ and $1/\chi$ ((emu)⁻¹) vs. T for GdMoO₄ are shown in Figures 5 and 6, respectively: for YMoO₄, $C_m = 0.213$ (1), $\mu_{eff} = 1.306$ (4) μ_B , $\theta = -62$ (1)°K; for GdMoO₄, $C_m = 8.175$ (8), $\mu_{eff} = 8.086$ (5) μ_B , $\theta = 0.3$ (2)°K.

8.086 (5) $\mu_{\rm B}$, $\theta = 0.3$ (2)°K. If we assume the Mo^V contribution to the susceptibility remains unchanged, the Gd^{III} contribution to the Curie constant $C_{\rm m(Gd)} = 7.86$. This compares favorably with the expected value for J = 7/2, $C_{\rm m} = 7.88$.

The large negative deviation of the effective moment of Mo^{V} from the spin-only value of 1.73 μ_{B} is undoubtedly caused by spin-orbit coupling of the lowest lying state and the first excited state. The infrared spectrum of GdMoO₄

Figure 3. Infrared absorption of $SrMoO_4$ and Eu_xMoO_4 compounds taken in pressed KBr pellets. $Eu_{0,67}MoO_4$ was taken in a Nujol mull between KBr disks. An asterisk indicates filter change.

indicates substantial distortion of the Mo^VO₄³⁻ tetrahedron. Most likely the lowest ²E state of an undistorted tetrahedron is split and the energy gap between this and the next excited state may not be large. The ground state is orbitally nondegenerate causing complete quenching of the ground-state orbital momentum contributions to the effective moment. In octahedral AMoF₆ (A = Na, K, Nb, Cs) the effective moment has been reported to be as low as $1.5 \,\mu_{\rm B}.^{12}$ Since Δ (tetrahedral) = $4/9 \,\Delta$ (octahedral) for equivalent ligands, the crystal field splitting Δ for these tetrahedral molybdates is quite reduced from the octahedral MoF₆⁻ case. In the case of a completely quenched ground-state orbital momentum $\mu_{\rm eff} = \mu_{\rm so}(1 - \alpha \lambda/\Delta),^{13}$ where $\mu_{\rm so}$ is the spin-only moment,

(12) G. B. Hargreaves and R. D. Peacock, J. Chem. Soc., 3776 (1958).

(13) B. N. Figgis and J. Lewis, "Modern Coordination Chemistry," J. Lewis and R. G. Wilkins, Ed., Interscience, London, 1960.

Figure 4. Infrared absorption of $Eu_{1-x}Gd_xMoO_4$ and $GdNbO_4$ (Mono = monoclinic).

Figure 5. $1/\chi_m \times 10^{-2}$ ((emu)⁻¹) vs. T (°K) for YMoO₄.

 λ is the spin-orbit coupling constant, $\alpha = 2$ for the d¹ case, and Δ is the crystal field splitting parameter. Dunn¹⁴ has

(14) T. M. Dunn, Trans. Faraday Soc., 57, 1441 (1961).

Figure 6. $1/\chi_m$ ((emu)⁻¹) vs. T (°K) for GdMoO₄.

calculated the spin-orbit coupling constant for the $\mathrm{Mo}^{\mathbf{v}}$ free ion as 1030 cm⁻¹. The actual spin-orbit coupling constant for coordinated Mo^v is most likely reduced only slightly from this value due to the slight expansion of the electron cloud. If μ_{eff} for Mo^V in these compounds is 1.306 (4) μ_{B} and $\alpha\lambda/\Delta \approx 0.23$, this would require $\bar{\Delta} \approx 9000 \text{ cm}^{-1}$. $\bar{\Delta}$ might be determined spectroscopically. However, these compounds are black and the spectrum from the infrared through the visible region is flat with the molybdates diluted in KBr pellets. It might be possible to dilute these compounds in a solid solution with an appropriate scheelite host. However no $A^{III}B^{V}O_{4}$ scheelite phases stable at room temperature are known with the exception of the high-pressure phases of the rare earth arsenates and vanadates.⁴ It is also not certain that the distortion of the BO_4^{3-} tetrahedra in these compounds is closely similar to that in the molybdates. It would be easier to dope these molybdates in rare earth niobates Ln- $Nb^{v}O_{4}$ which crystallize in the monoclinic fergusonite structure. This is a distortion of scheelite.¹¹ In addition NbO₄³⁻ has a similar tetrahedral distortion to those of the molybdates as indicated in its infrared spectrum in Figure 4.

Conclusions

Lattice parameter and density measurements on the solid solutions Eu_xMoO_4 indicate that the molybdenum remains in the 6+ oxidation state and that the vacancies are compensated by the presence of Eu^{3+} resulting in the formula $Eu^{II}_{1-3x}Eu^{III}_{2x}\Box_xMoO_4$. Although the infrared spectra of these phases appear to support this formulation, with the appearance of broadening and extra peaks indicating the presence of multiple sites, the presence of some MoO_4^{3-} cannot be completely ruled out. The increase in absorption in the region of the main peak of MoO_4^{3-} cannot be attributed to that anion, but it is possible that it may be making some contribution in concentrations too low to permit the appearance of a peak at 650 cm⁻¹. The poor resolution of these spectra

and the inability to obtain Raman spectra have precluded any attempt at more detailed analysis.

The disordered scheelite structure of $Eu_{0.67}MOO_4$ appears to be similar to that of the high-temperature phase which was suggested to exist above 848° by Jeitschko,¹⁵ who reported that single crystals of $La_2(MOO_4)_3$ grown by the Czochralski method fractured on cooling through that temperature. This was attributed to a disorder-order transition. Our $Eu_{0.67}MOO_4$, quenched from 1200°, transformed to the ordered structure of $Eu_2(MOO_4)_3$ on grinding with KBr. This indicated it was metastable.

The LnMoO₄ compounds clearly contain MoO_4^{3-} , with no evidence for $MoO_4^{2^-}$ in the infrared spectra. The significant decrease in lattice parameters relative to $\mathrm{EuMoO_4}$ and the similarity of the infrared spectra of GdNbO4 and GdMo-O₄ all strongly confirm the formulation. The infrared spectrum of GdNbO₄ essentially agrees with that of YNbO₄ previously reported.¹⁶ The cell volume of the high-temperature scheelite form of GdNbO₄ has been reported¹⁷ as 306.2 Å³ measured at 850° which is guite close to our value of 304.0 Å³ for GdMoO₄ taken at room temperature. In addition, the isostructural relation of all members of the series, including YMoO₄, and the regular decrease in lattice parameters following the lanthanide contraction leave little room for doubt. These compounds appear to be the first in which the MoO_4^{3-} anion has been reported as the only molybdenum species present.

The growth of single crystals of the intermediate Eu_xMOO_4 phase would be of considerable interest, especially if ordered low-temperature phases could be prepared at certain compositions. Flux methods would probably be necessary; samples with x > 0.67 melted incongruently. The LnMoO₄ compounds decomposed to mixtures of Ln₂(MoO₄)₃, MoO₂, and Ln₂O₃ at high temperatures, and low-melting flux techniques might be the only possibility for successful growth.

The reduced moment of Mo^V (4d¹) in YMoO₄ and GdMo-O₄ can be attributed to spin-orbit coupling. It would be useful to be able to determine the splitting parameter Δ spectroscopically, preferably in a dilute system. The rare earth niobates LnNbO₄ would be a first choice as the host for these materials.

Acknowledgment. We wish to thank Professor Aaron Wold and Dr. J. J. Steger of Brown University for making the magnetic measurements. This work was sponsored by the U. S. Army Research Office (Durham, N. C.), Grant No. DA-ARO-D-31-124-72-G-7, and the Joint Services Electronic Program under Contract No. F44620-69-C-0047.

Registry No. $YMoO_4$, 52322-39-1; $EuMoO_4$, 22206-17-3; Gd-MoO_4, 52322-34-6; $TbMoO_4$, 52322-37-9; $DyMoO_4$, 52322-32-4; HoMoO_4, 52322-35-7; $ErMoO_4$, 52322-33-5; $TmMoO_4$, 52322-38-0; $YbMoO_4$, 52322-40-4; $LuMoO_4$, 52322-36-8; Eu_xMoO_4 , 52322-41-5.

(17) K. A. Gingerich and H. E. Blair, Advan. X-Ray Anal., 7, 22 (1964).

⁽¹⁵⁾ W. Jeitschko, Acta Crystallogr., Sect. B, 29, 2074 (1973).

⁽¹⁶⁾ G. Blasse, J. Solid State Chem., 7, 169 (1973).